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A bs tract 

It is shown that coherent states may be defined for an arbitrary dynamical (Hamfltonian) 
quantum system and the definition is consistent with the requirement that the Hamiltonian 
commutes with a Lie algebra 7, and 7 can be integrated to form a Lie group G. 

There are numerous important  examples of features of a dynamical theory 
for which the use of coherent states becomes relevant: for instance, the descrip- 
tion of a system with infinitely many degrees of freedom, in which quantum 
characteristics are macroscopically relevant. 

On the other hand, the commonly used coherent states, based on the Fock 
representation, are known to be inapplicable for theories possessing nontriviat 
invariance groups. Only under restrictive assumptions (Rasetti, 1975)(which 
amount to breaking of the invariance requirement: one allows a nonstrictly 
translationally invariant state in the representation space) can the determina- 
tion of the dynamics of the system still be handled within the framework of  
coherent states when the Hamiltonian includes interacting terms exhibiting 
wider invariance groups. 
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Usual coherent states (Klauder, 1968) are therefore suitable for the descrip- 
tion of a weakly interacting system in which low energy excitations are over 
a ground state in which the boson modes are highly occupied and which con- 
sequently behaves in some sense classicaIty. 

tn this context they constitute a set of  functional representatives of the 
abstract state vector of the system, where every member of which, besides 
being translationally invariant in the representation space, is an entire analytic 
function. 

So, coherent states actually play the role of classical Schr6dinger fields, 
which describe the complete many boson system just in the same way as e.g., 
the Maxwell field describes the classical limit of quantum etectrodynamics. 

Now, Bose statistics are connected through the usual commutation relations 
of second quantized field theoretical creation and annihilation operators, to 
the well known nilpotent Weyt group. The generalization of the concept of 
coherent state to dynamical systems not isomorphic to harmonic oscillators, 
and therefore to different groups is immediately appealing, and it may be 
formulated in abstract terms in the following way. 

A Lie group G is a topological group and a differentiable manifold of class 
1, differentially equivalent to an analytic manifold in which the two operations 
G x G - G given by (g, g') ~ gg' and G ~ G given by g ~ g-1 (g, g' E G) are 
analytic. 

Any closed subgroup H of G is itself a Lie group, and the inclusion map 
/ / C  G is analytic and nonsingular. So an analytic structure is defined in the left 
coset space G/H in such a way that the projectionp: G -~ G/H is analytic and 
of maximum rank at each point of  G. 

It follows that G is a bundle over G/H with respect to the projection p. Then 
His  a point, s a y , x o E M =  G/Hof the homogeneous space of the left cosets of 
H i n  G, thought of as a manifoldM with a topology defined by p (actually it 
can be shown that M is a Hausdorff space). A local cross section of H in G is a 
function f mapping a neighborhood V of x o continuously into G and such 
thatpf(x) --x for each x E V. Clearly such a function f exists, because G is a 
bundle over G/H. 

Now, if H has a local cross section in G, then G is a fibre bundle over M as 
base space relative to the projection p which assigns to eachg the coset gH. 
The fibre of the bundle is H, and the group is Hacting on the fibre by left 
translations. 

G is a group of transformations of M under the operation of left translation 
defined by g .x  = p(g" p-1 (x)); transitive and it is a group of homeomorphisms 
of G/H. (Notice that the transformation G -~ G sending each g into its inverse, 
maps each left coset of  H into a right coset and conversely: this induces a 
homeomorphism between the left and right coset spaces. So talking of left or 
right translations doesn't limit the generality.) Finding a cross section for the 
bundle G is just the problem of constructing in G a simply-transitive continuous 
family o f transformations. 

There exists a topological transformation group acting effectively over M, 
namely the factor group G/H o where H o is the intersection of all the subgroups 
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gHg -1 conjugate to H in G (so that H 0 is a closed invariant subgroup of G, 
and it is the largest subgroup of H which is invariant in G). Peretomov (1972) 
assumes as a subgroup H the subgroup of stability of any fixed point x o EM, 
namely the set of transformations of G which map x o into x o- Each homogeneous 
space is completely defined by some group of staNlity: actually let g c G carry 
x o into x. Then the transformations of the form hg (h EH,  the stability subgroup 
ofxo)  also map x o into x. Thus the set of such transformations is a right coset 
of the stability subgroup of x o, and there exists a mutually single-valued 
correspondence between the points of the homogeneous space M and the right 
cosets with respect to H. Note how, although the choice o f x  o is an unused 
degree of freedom, the space M is however uniquely defined. Actually, changing 
the fixed point x o to x o =g"  x o amounts to changing the subgroup of stability 
to g'Hg '-1 which is a subgroup of G conjugate to H. 

Let now n be a unitary representation of the topological group G on the 
Hilbert space3f~. Consider the vectors Iv c )  Eduf~. Any positive definite func- 
tion ~ ~ 0 on G corresponds to a unitary representation rr of  G for a suitable 
vector [vc). Let JV'be the subspace of J r  G consisting of all the vectors boo c )  
E ~ a  whose norm is left fixed by each n(h), h @ H(Tr is assumed to be of class 1, 
so that at least one such a vector exists and is not null). The subspace~qs one 
dimensional (Helgason, t968). 

Provided one identifies the fiber H as a circle, the mapping of which carries 
dtfinto x o (homotopy classes of  such maps constituting the elements of the 
homotopy group of M) defines the coherent states. 

In particular let G be parametrized by the set of parameters {c~} = {ai; i = 
1 . . . .  , r} E M. a~t°G is defined as a space of functions ~({a}) (a vector of which 
will be denoted by t~ {a } ) and the scalar product-linear in [¢ (~ }) and 
antilinear in I ~ {~ } ) - b y  ( q; (~ ~[ ~ together with an invariant measure 
du({a} ) such that ~ E ~  a if {t~}))' 

On this manifold unitary representations may be defined in the usual way by 
means of right and left translations 

Tg(R) I ~ {~ } ) = I~ (~ .g}) (2) 

rg(L}l ~{~} > = i~ {g.~}> (3) 

The unitary transformations T (R) and T (L) naturally commute with each 
other 

T(R)Tg'(LI[~ {o~ } )= Tg(R)[t~ (.g'. e} )= [~l (g'. c~ .g} )= Tg'(L)Tg(R)]~ (o~ } } 

(4) 
Now, i f H  is a circle, there exists at least one set of parameters {%} such that 

Th [~{ao} }= e iO(h) 1~(%) ), h E H (5) 

Coherent states for the Lie Group G are now defined according to the previous 
scheme 
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I~g >= Iff{pgp-' ~} > (6) 

It is in general possible to choose the parametrization of G in such a way that 
the parameters of H are restricted to the subset (a(H) } = {ai;j = s + 1 . . . .  , r }. 
If one considers now the representations of H obtained e.g., by right translations 
Th(R), the eigenstates 1~{~ }(k]/) ) of the Casimir operator Ck(R) with eigen- 
values k can be factorized in the form 

I~ {o~}(k 1/) ) = l¢{#/z)  } (k  I0 ;, ( ( & ( m )  lf~ :' (7) 

where (~(H) } = (o:i;] = 1 . . . . .  s} is the complementary set of {a( n)} with 
respect to (cQ, and ((5( ~)} t)~ ) are either arbitrary functions or members 
of a complete orthonormal set over the space of such functions. 

The above factorization is obviously possible because Ck(R) depends only 
on (odH)}. On the other hand Ctc(R) commutes with Tg(r) in the same way as 
each Th (R) does, so the effect Tg(L) on l~ {a}(kli)  ) will be given by 

Tg(L) I ¢' {,~}(k I/) ) = z; [Tg(L)(k)]z,]l ¢,(,~}(k I/) ) (8) 
] 

where 

Tg(L)(k) : ek  rg(L)Pk (9) 

Pk being the projection operator fromJfG onto the subspace,A'x which is 
spanned by [~{a}(k[/) ) for fixed k. 

For any [ ~{a}(k) ) EJt 'k then one can write 

I~{~}(k)) = ~l¢{cAH)}(kli)>((g~(H)}if~) (10) 

with 

({5(~)}1.5) = f d ~ + l  . . .da~ (O{o~(H))(kli)lJ/{~)(k) ( t l )  

and then one has 

Tg (L) ( { 5(H) } [~ ) = ~ [Tg(L)(k)] if'J) ( { 5(H)) [;i ) (12) 
J 

[Tg(i)(k)] (~'n =fdc~+ 1 . . .  dc~, (O{oAH)}(klj)[gT((2(H)}(k[i)) (13) 

being 

]gT~2(H)}(kii) )= fdcq . . . de~s{(Tg(L)[ fdas+l  . . . dar ( ~b{a(H,} x 

(kt01~ 
So if the T(L) form a representation of G over •G' then they will also be a 
representation of G overJ/x. 

Now if J1 . . . .  , Jr  are the generators of the Lie algebra 3' corresponding to 
G, and T(L)(J1) . . . . .  T(L)(Jr) are their representations on,~G as left trans- 
lations, then 

[T(L)(J), Ck (R)] = 0 (15) 
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and one may define the following k-dependent operators: 

T(L)(J Ik) = Pk T ( L ) ( J ~ k  (l 6) 

They have the usual commutation relations, and give, therefore, a representa- 
tion of the Lie algebra 3'. Now for any operator ~conta ined  in the Casimir 
subalgebra of the enveloping algebra of the left translations, one has then 

[~, T(L)(J)] = [S, Ck (n) ] = 0 (17) 

The first equation expresses the fact that the system described by~f~has the 
symmetry group G, while the second equation is the obvious consequence of 
the fact that left and right translations commute. Hence one can write 

~.~f(k) = P k ~ f P k  (18) 

and ~f(k) can now be assumed as the Hamiltonian for a system with coordinates 
c q , . . . ,  a s containing a constant k which can be interpreted as an interaction 
constant. 

Conversely if the operatoro~(k) is given, as an operator on functions of  the 
variables a 1 . . . . .  as, one can determine that the operators T(R) (J) form a Lie 
algebra commuting wi thX(k) ,  and show how this statement is true for all values 
of k. Such an algebra, however, cannot in general be integrated to form a Lie 
group, otherwise by reversing the argument one would find that Ck(R) had 
eigenvalues other than those permitted by the structure of the [compact] 
group H and the topology of the group manifold. 

The requirement that there be a Lie algebra commuting with the Hamiltonian 
is of  course weaker than the global symmetry requirement, namely of integra- 
bility to a Lie group of the Lie algebra. 

Actually, in order that an element s E 3' of a Lie algebra can be the generator 
of a one parameter subgroup S(t)  of a Lie group G it is necessary that the 
series 

S(t)  = e its = ~ (it)n s n (19) 
n! 

n=O 

exist and converge. This means that, if s is a self-adjoint operator over the 
Hilbert space~"4°a, then its domain D(s) must be an invariance domain, i.e., if 
t ff ) E D(s) then s n l ~ ) E D(s)  for all n; and that l IS(t) l if) H( ~ for all 
o < t < to 4:- 0. The necessary and sufficient condition for this to be so, is that 
the operator 

A = ~ si 2 (20) 
i 

be essentially self-adjoint. 
So the operator A can be only a member of the Casimir algebra for compact 

semisimple groups, because only in that case the metric of the Killing form 
can be chosen to be definite. 

But this is the condition for the definition of the coherent state [~,). Now 
if the space spanned by the eigenstates [~b{a(H)} (k l]') ) is multidimensional, 
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then usually the dimensions will vary with k. This means that not only k is 
quantized, but the dimensionality of the states {(~(H) ) tft) will depend on 
its value. 

In other words, if the dimensionality of the vector space is fixed, then there 
is a symmetry group only if the interaction constant takes the value appropriate 
to the dimensionality of the space. 

Now, in the cases when coherent states can be constructed it happens that 
the operator U(ko Ik) exists such that 

U(kolk)Jgk  = Jgko (21) 

and hence 

U(kotk')U(k' jk ) = U(kolk ) (22) 

If U exists, then under the mapping 

Tg(L)(k) -~ U(kolk)Tg(L)(k)U(kiko) = Tg(L )(ko) (23) 

and one has a family of representations Tg(L)(ko) all acting in the single sub- 
spaceJ/ko • Only if k has the permitted value k o will such a representation be 
integrable and the coherent state be definable. 
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